skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nguyen, Tien"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 18, 2026
  2. Free, publicly-accessible full text available April 26, 2026
  3. Free, publicly-accessible full text available January 1, 2026
  4. Neuromuscular diseases pose significant health and economic challenges, necessitating innovative monitoring technologies for personalizable treatment. Existing devices detect muscular motions either indirectly from mechanoacoustic signatures on skin surface or via ultrasound waves that demand specialized skin adhesion. Here, we report a wireless wearable system, Laryngeal Health Monitor (LaHMo), designed to be conformally placed on the neck for continuously measuring movements of underlying muscles. The system uses near-infrared (NIR) light that features deep-tissue penetration and strong interaction with myoglobin to capture muscular locomotion. The incorporated inertial measurement unit sensor further decouples the superposition of signals from NIR recordings. Integrating a multimodal AI-boosted algorithm based on recurrent neural network, the system accurately classifies activities of physiological events. An adaptive model enables fast individualization without enormous data sources from the target user, facilitating its broad applicability. Long-term tests and simulations suggest the potential efficacy of the LaHMo platform for real-world applications, such as monitoring disease progression in neuromuscular disorders, evaluating treatment efficacy, and providing biofeedback for rehabilitation exercises. The LaHMo platform may serve as a general noninvasive, user-friendly solution for assessing neuromuscular function beyond the anterior neck, potentially improving diagnostics and treatment of various neuromuscular disorders. 
    more » « less
    Free, publicly-accessible full text available December 17, 2025
  5. Programming languages are essential tools for developers, and their evolution plays a crucial role in supporting the activities of developers. One instance of programming language evolution is the introduction of syntactic sugars, which are additional syntax elements that provide alternative, more readable code constructs. However, the process of designing and evolving a programming language has traditionally been guided by anecdotal experiences and intuition. Recent advances in tools and methodologies for mining open-source repositories have enabled developers to make data-driven software engineering decisions. In light of this, this paper proposes an approach for motivating data-driven programming evolution by applying frequent subgraph mining techniques to a large dataset of 166,827,154 open-source Java methods. The dataset is mined by generalizing Java control-flow graphs to capture broad programming language usages and instances of duplication. Frequent subgraphs are then extracted to identify potentially impactful opportunities for new syntactic sugars. Our diverse results demonstrate the benefits of the proposed technique by identifying new syntactic sugars involving a variety of programming constructs that could be implemented in Java, thus simplifying frequent code idioms. This approach can potentially provide valuable insights for Java language designers, and serve as a proof-of-concept for data-driven programming language design and evolution. 
    more » « less
  6. Free, publicly-accessible full text available February 26, 2026
  7. Heat stress (HS) negatively affects animal productivity and welfare. The usage of wearable sensors to detect behavioral changes in ruminants undergoing HS has not been well studied. This study aimed to investigate changes in sheep’s behavior using a wearable sensor and explore how ambient temperature influenced the algorithm’s capacity to classify behaviors. Six sheep (Suffolk, Dorset, or Suffolk × Dorset) were assigned to 1 of 2 groups in a cross-over experimental design. Groups were assigned to one of two rooms where they were housed for 20d prior to switching rooms. The thermal environment within the rooms was altered five times per period. In the first room, the temperature began at a thermoneutral level and gradually increased before decreasing. Simultaneously, in the second room, the temperature began at hot temperatures and gradually decreased before increasing again. Physiological responses (respiratory rate, heart rate, and rectal temperature) were analyzed using a linear mixed-effects model. A random forest algorithm was developed to classify lying, standing, eating, and ruminating (while lying and standing). Thermal stress shifted daily animal behavior budgets, increasing total time spent standing in hot conditions (p = 0.036). Although models had a similar capacity to classify behaviors within a temperature range, their accuracy decreased when applied outside that range. Although wearable sensors may help classify behavioral shifts indicative of thermal stress, algorithms must be robustly derived across environments. 
    more » « less